ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Ghanshyam Thakur, Raju Khanal, Bijoyendra Narayan
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 324-329
Technical Paper | doi.org/10.1080/15361055.2019.1579623
Articles are hosted by Taylor and Francis Online.
In this work, plasma is produced by arc discharge between two copper electrodes and is characterized by a movable single probe and a double Langmuir probe. The movable Langmuir single-probe technique has a reference point since it is biased with reference to one of the electrodes of the plasma-producing system. In some situations such as radio-frequency discharges, no reference point is available to bias the movable single probe. In the double-probe method, each probe is biased with respect to each other and allowed to move through the arc plasma. Depending on the magnitude of the biasing potential, charges are collected by the probes, and the probe current flowing to the circuit is calculated. After that, we obtain the electron temperature and plasma density of the arc plasma. By using the double-probe method, the value of the plasma density is more precise than with the single-probe method. Hence, the double-probe method is more appropriate than the single-probe method.