ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
Yican Wu
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 321-329
Technical Paper | doi.org/10.1080/15361055.2018.1475162
Articles are hosted by Taylor and Francis Online.
Advanced nuclear systems, such as fusion systems, generally have features of large size, complex structures, spatially heterogeneous distribution of components and materials, and high energy and high flux, as well as a wide and complex energy spectrum of neutrons. Compared with traditional nuclear systems, these features have brought unprecedented challenges to neutronics design and analysis. To confront these challenges, the FDS Team has made significant progress in the development of neutronics methods and the comprehensive simulation code Super Multi-functional Calculation Program for Nuclear Design and Safety Evaluation (SuperMC). Furthermore, the FDS Team has been developing the High Intensity D-T Fusion Neutron Generator (HINEG) and has performed a series of neutronics experiments. Based on the developed methods, codes, and facility, a series of fusion designs and analyses has been carried out, including the design of FDS series reactors as well as the ITER neutronics analysis.