ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Yican Wu
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 321-329
Technical Paper | doi.org/10.1080/15361055.2018.1475162
Articles are hosted by Taylor and Francis Online.
Advanced nuclear systems, such as fusion systems, generally have features of large size, complex structures, spatially heterogeneous distribution of components and materials, and high energy and high flux, as well as a wide and complex energy spectrum of neutrons. Compared with traditional nuclear systems, these features have brought unprecedented challenges to neutronics design and analysis. To confront these challenges, the FDS Team has made significant progress in the development of neutronics methods and the comprehensive simulation code Super Multi-functional Calculation Program for Nuclear Design and Safety Evaluation (SuperMC). Furthermore, the FDS Team has been developing the High Intensity D-T Fusion Neutron Generator (HINEG) and has performed a series of neutronics experiments. Based on the developed methods, codes, and facility, a series of fusion designs and analyses has been carried out, including the design of FDS series reactors as well as the ITER neutronics analysis.