ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Jinan Yang, Stephen C. Wilson, Scott W. Mosher, Georgeta Radulescu
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 277-287
Technical Paper | doi.org/10.1080/15361055.2018.1493325
Articles are hosted by Taylor and Francis Online.
The ITER International Organization has developed a number of reference Monte Carlo N-Particle (MCNP) models including the tokamak machine C-model, the Tokamak Complex model, and the neutral beam injection (NBI) systems model. The Tokamak Complex model primarily describes building structures beyond the bioshield. Representation of the tokamak and its systems are not included in this model. The Oak Ridge National Laboratory Radiation Transport Group has conducted two ITER neutronic analysis model integrations: (1) integration of the tokamak C-model with the Tokamak Complex model for shutdown dose rate characterization in Port Cell 16 at level B1, and (2) integration of the NBI model with the Tokamak Complex model for estimating the spatial distribution of biological dose rate at levels L1, L2, and L3 of the Tokamak Complex. The integrated models were further extended to include models of system components that are essential to the neutronic analyses. This paper presents the approach and computer tools used to integrate existing reference models, describes the additional design details implemented in the integrated models, and provides representative neutronic calculations based on the extended models.