ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Jinan Yang, Stephen C. Wilson, Scott W. Mosher, Georgeta Radulescu
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 277-287
Technical Paper | doi.org/10.1080/15361055.2018.1493325
Articles are hosted by Taylor and Francis Online.
The ITER International Organization has developed a number of reference Monte Carlo N-Particle (MCNP) models including the tokamak machine C-model, the Tokamak Complex model, and the neutral beam injection (NBI) systems model. The Tokamak Complex model primarily describes building structures beyond the bioshield. Representation of the tokamak and its systems are not included in this model. The Oak Ridge National Laboratory Radiation Transport Group has conducted two ITER neutronic analysis model integrations: (1) integration of the tokamak C-model with the Tokamak Complex model for shutdown dose rate characterization in Port Cell 16 at level B1, and (2) integration of the NBI model with the Tokamak Complex model for estimating the spatial distribution of biological dose rate at levels L1, L2, and L3 of the Tokamak Complex. The integrated models were further extended to include models of system components that are essential to the neutronic analyses. This paper presents the approach and computer tools used to integrate existing reference models, describes the additional design details implemented in the integrated models, and provides representative neutronic calculations based on the extended models.