ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
T. Bernat, C. Castro, J. Hund, A. Pastrnak, N. Petta, J. Sin, O. Stein
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 392-399
Technical Paper | doi.org/10.1080/15361055.2017.1406250
Articles are hosted by Taylor and Francis Online.
Thin polyimide (PI) windows are used to contain gases in a variety of targets including National Ignition Facility ignition targets. Magnetized liner inertial fusion targets shot on the Sandia National Laboratory Z-facility and on the University of Rochester OMEGA laser facility typically contain deuterium gas in the pressure range from a few to as many as 15 atm, with the window diameters ranging from a few tenths of a millimeter at OMEGA to several millimeters at the Z-facility. These pressures are generally higher, with larger plastic deformations, than previously investigated. We have fabricated and assembled PI windows and measured their deflections and burst pressures for these pressure and diameter ranges at room temperature. The results are dependent on PI formulation and the details of the window assembly geometry. We analyze the scaling behavior of these higher-pressure windows similarly to but with an extension of the analysis of Bhandarkar et al. [Fusion Sci. Technol., Vol. 70, p. 332] and show that predictions of pressure-induced deflection using this analysis applies to a more complex window geometry than previously reported.