ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
T. Bernat, C. Castro, J. Hund, A. Pastrnak, N. Petta, J. Sin, O. Stein
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 392-399
Technical Paper | doi.org/10.1080/15361055.2017.1406250
Articles are hosted by Taylor and Francis Online.
Thin polyimide (PI) windows are used to contain gases in a variety of targets including National Ignition Facility ignition targets. Magnetized liner inertial fusion targets shot on the Sandia National Laboratory Z-facility and on the University of Rochester OMEGA laser facility typically contain deuterium gas in the pressure range from a few to as many as 15 atm, with the window diameters ranging from a few tenths of a millimeter at OMEGA to several millimeters at the Z-facility. These pressures are generally higher, with larger plastic deformations, than previously investigated. We have fabricated and assembled PI windows and measured their deflections and burst pressures for these pressure and diameter ranges at room temperature. The results are dependent on PI formulation and the details of the window assembly geometry. We analyze the scaling behavior of these higher-pressure windows similarly to but with an extension of the analysis of Bhandarkar et al. [Fusion Sci. Technol., Vol. 70, p. 332] and show that predictions of pressure-induced deflection using this analysis applies to a more complex window geometry than previously reported.