ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Shuhei Nogami, Takashi Nozawa, Daichi Kawai, Wenhai Guan, Akira Hasegawa
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 398-403
Technical Paper | doi.org/10.1080/15361055.2017.1333822
Articles are hosted by Taylor and Francis Online.
Because fatigue resistance is one of the most important issues for the blanket structural materials of the fusion reactor, the fatigue damage formation processes of the advanced SiC/SiC composite (Tyranno SA 3rd/CVI-SiC composite with SiC/C multilayer interphase) for fusion reactor applications were investigated. The fatigue tests of the SiC/SiC composite were successfully performed up to 105 cycles with no significant technical issues by using a small specimen test technique developed under the IFMIF/EVEDA. Based on the evaluation of the modulus change during the fatigue tests, the tensile loading was clarified to be a dominant factor for the degradation of the SiC/SiC composite.