ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hiroki Shishido, Noritaka Yusa, Hidetoshi Hashizume, Yoshiki Ishii, Norikazu Ohtori
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 382-388
Technical Paper | doi.org/10.1080/15361055.2017.1330623
Articles are hosted by Taylor and Francis Online.
The present study evaluates the thermal design of a blanket system using Flinabe in order to facilitate further discussions on its applicability as a self-cooled liquid blanket system. Molecular dynamics simulations were performed to evaluate the Prandtl number of mixtures in five compositions (LiF–NaF–BeF2 = 31–31–38, 36–27–37, 42–22–36, 49–16–35, and 67–0–33). Thermofluid analysis was carried out to estimate the temperature margin and pressure drop per unit length in a simple geometry model of the blanket system. The Prandtl number of Flinabe is above 100 at 400°C. The present study reveals that Flinabe remarkably relaxes the design conditions compared to Flibe as a coolant owing to its low melting point. In contrast, the pressure drop per unit length of Flinabe is higher than that of Flibe because the viscosity exponentially increases at low temperature. The temperature margin is quite dependent on the heat load on the first wall. If the pressure drop per unit length is around 1.0 MPa/m, the heat load value must be approximately below 0.7 MW/m2.