ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jason Wilson, James Klein, Kirk Shanahan, Paul Korinko, Anita Poore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 666-670
Technical Note | doi.org/10.1080/15361055.2017.1290943
Articles are hosted by Taylor and Francis Online.
In facilities containing tritium, all process equipment is contained in inerted gloveboxes operating at slightly negative pressure relative to the process rooms. The gloveboxes have recirculation systems which include a stripper system. The glovebox stripper systems capture tritium from the glovebox atmosphere to minimize facility emissions with the possibility of recovering the tritium.
Hydrogen isotopes released into the gloveboxes are converted to oxide form and removed from the glovebox atmosphere by the glovebox stripper systems – the intended function of these systems. Protiated water (and oxygen) enters the glovebox system in various ways. All water in the gloveboxes is ultimately removed by the stripper system molecular sieve beds which are then processed or disposed of as waste. The water and oxygen enter the glovebox in locations both internal and external to the gloveboxes. The majority of oxygen and water originates external to the gloveboxes in current facility operations.
This study evaluated approaches for water source reduction i.e. reducing the amount of water entering the gloveboxes. The second approach explored options to segregate or prevent the mixing of protiated water in the glovebox with the tritiated water formed as part of the tritium oxidation and capture process used to reduce facility emissions.