ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. B. Rozenkevich, I. L. Rastunova, S. V. Prokunin
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 466-469
Technical Paper | Water Processing | doi.org/10.13182/FST08-A1855
Articles are hosted by Taylor and Francis Online.
Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafiontype membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm2 of the membrane and 10 cm3 of the catalyst. The column is washed by tritium free light water (LH2O) and the tritiumcontaining flow (FHTO) feeds the electrolyser at = GH2/LH2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa.