ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. Miyamoto et al.
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 265-268
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1809
Articles are hosted by Taylor and Francis Online.
A six-compartment metabolic model for tritium accumulation by bivalves was developed and validated using two observed data sets supplied in an international IAEA program for validation of environmental models, EMRAS (Environmental Modeling for Radiation Safety, 2003-2007). The data observed were presented in scenarios for model prediction of temporal change of HTO and OBT concentrations in Barnes mussels (Elliptio complanata). In the Uptake Scenario, mussels were transplanted from a site with background tritium concentrations into a lake, which has historically received tritium inputs over time from upgradient waste management areas. Another data set was presented in the Depuration Scenario for model prediction of the temporal decrease in HTO and OBT concentrations in the mussels following transplantation from the lake into another lake with significantly lower tritium levels. The model simulation was able to reproduce the observation that the amount of hydrogen taken from sediment was very small compared with that taken from lake water.