ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
N. Baglan, R. Le Meignen, G. Alanic, F. Pointurier
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 243-247
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1804
Articles are hosted by Taylor and Francis Online.
Tritium exists in environmental samples in three forms: (i) Tissue Free Water Tritium (TFWT) and associated with the organic matter (OBT) under two forms; (ii) bound to oxygen and nitrogen atoms into the material (EOBT); (iii) bound to carbon atoms into the material (NEOBT). The developed analytical procedure allows obtaining accurate and reproducible information for the various tritium fraction determinations.Aiming to follow the distribution and the integration of NE-OBT in the vicinity of a nuclear research centre down to environmental level the analytical procedure was optimized to reduce possible contamination during critical stages such as the E-OBT elimination. Therefore, a new process using steam was designed and investigated leading to promising results.A broad study was initiated to study potential impact of tritium on tree leaves sampled in the vicinity of a nuclear research centre within a radius of about 20 km. Moreover both plane tree and oak leaves have been sampled to establish the NE-OBT mapping. Therefore, for several locations they were sampled twofold for comparison. Appropriate statistical tests allow assessing that the type of tree does not influence the NE-OBT integration in our experimental conditions.