ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jean Jacquinot, Martin Keilhacker, Paul-Henri Rebut
Fusion Science and Technology | Volume 53 | Number 4 | May 2008 | Pages 866-890
Technical Paper | Special Issue on Joint European Torus (jet) | doi.org/10.13182/FST08-A1742
Articles are hosted by Taylor and Francis Online.
The JET design, which started in 1973, introduced bold new concepts such as D-shaped plasmas in large tokamaks, a closed-loop tritium plant, and the use of beryllium as a first-wall material. It implied increasing by two orders of magnitudes the plasma volume and the heating power compared to the standard at the time. During the JET Joint Undertaking operation from 1978 to 1999, most of these design parameters were exceeded. After achieving all of its initial objectives, JET was upgraded and modified to establish H-mode scaling and to perform comprehensive studies of divertor and advanced tokamak concepts. JET holds all records in fusion power and energy and has allowed a unique experience in D-T operation to be gained. The JET results have made a decisive contribution to the scaling laws on which the basic layout and the dimensions of ITER are based. JET today under its new EFDA-JET organization is still the most powerful fusion device operating in the world, with potential to extend its performance even further. It has the essential mission to prepare for D-T burn in ITER and to train a new generation of scientists for developing fusion as an energy source.