ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Shim, H. Chung, S. Cho, H. Yoshida
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 830-840
Technical Paper | doi.org/10.13182/FST08-26
Articles are hosted by Taylor and Francis Online.
Quantitative assessment of a disproportionation in the ZrCo-hydrogen system under ITER-relevant operating conditions was performed by means of experimental tests and a theoretical calculation. In the static temperature experiments with equilibrium hydrogen pressures, a 10% disproportionation of ZrCoHx (x = 2.0 and 2.5) was observed in 5.5 h at 415°C (~78 kPa), 9 h at 400°C (~72 kPa), 172 h at 380°C (~51 kPa), and 1626 h at 350°C (~28 kPa). An experimental formula [log = 17 268/T (K) - 25.814, where is the reaction time (day) of 10% disproportionation] was derived from these experiments. Experiments with a temperature cycling of up to 125 cycles (from room temperature to 350 to 360°C) proved that no enhancement of a disproportionation occurs in the ZrCoHx (1.7 < x 2.0). Typical operation conditions of the ZrCo hydride bed for the D-T gas storage delivery system were proposed based on the ITER FDR 2000 plasma operation scenarios. The disproportionation rate estimated conservatively by the theoretical model indicates that a disproportionation in the ITER basic performance phase can be reduced by <4% even when there is a direct supply from the fuel storage and delivery system beds for all the D-T pulses and by <0.1% when the supply is from the hydrogen isotope separation system.