ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
T. Eich, A. Werner
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 761-779
Technical Paper | doi.org/10.13182/FST08-A1733
Articles are hosted by Taylor and Francis Online.
The heat load due to plasma radiation is estimated for the plasma wall components of the stellarator Wendelstein 7-X (W7-X). A fully three-dimensional Monte Carlo code is used to simulate heating of first-wall components due to photon emission from the plasma. The plasma wall components can be described in a complex way with arbitrary shapes and orientation and flexible numerical representation. The volume radiation distribution is assumed to be described by poloidal symmetric and radially varying one-dimensional profiles aligned to the magnetic flux surfaces. A further example is given by a nonpoloidal symmetric radiation distribution following the five X point regions of the island divertor magnetic structure. Several realistic and artificial radiation profiles are chosen to investigate the local heat loads on an idealized plasma wall. The first detailed technical application of the code is the estimation of the local heat load on the Thomson scattering windows and on the inner surface of several vacuum ports of one half-module of the W7-X plasma vessel.