ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
M. Sasao, T. Nishitani, A. Krasilnilov, S. Popovichev, V. Kiptily, J. Kallne
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 604-639
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1681
Articles are hosted by Taylor and Francis Online.
Fusion product diagnostics can be used to determine a fusion reaction rate, which indicates how close the plasma is to the ultimate goal of making a power plant based on nuclear fusion. However, these diagnostics can also provide large amounts of additional information, such as ion temperatures, the thermonuclear fraction in the fusion reaction rate, degree of fast ion confinement, fast ion loss mechanism, etc. Measurement systems for fusion product diagnostics are usually designed and optimized to a specific performance so that they play different roles in the experiment. The neutron emission rate, which is directly related to the fusion output, can be determined by (a) time-resolved emission monitors, which are well calibrated onsite, in combination with (b) activation systems and (c) profile monitors with accuracy up to several percent. The time-resolved neutron profiles also provide useful information for transport analysis. Velocity distributions and confinement properties of fast ions can be obtained from (d) the neutron spectrometers and (e) gamma-ray measurement. The interaction between plasma dynamics and fast ions can be studied with most fusion product diagnostic systems, especially with (f) escaping charged fusion product detectors. Each section of this chapter contains a general explanation of these systems, showing some experimental results obtained on present devices. A lot of interesting and useful information on the behavior of energetic particles and their degree of confinement are provided by them because interaction between thermal and nonthermal energetic ions and that among nonthermal ions contribute dominantly to the fusion reaction rate in present deuterium-deuterium experiments. In future deuterium-tritium fusion experiments on ITER, the contribution of thermonuclear fraction will be increased, and the combination of several neutron measurement systems will provide the absolute fusion output and neutron fluence on the first wall. Together with neutron measurement, alpha particle and gamma-ray measurement play important roles in research on self-heating burning plasma physics and hence in the burning control of the device.