ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. L. Doane
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 159-173
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1662
Articles are hosted by Taylor and Francis Online.
Low-loss circular waveguides will be needed for a large number of millimeter-wave transmission lines on ITER, including those transmitting electron cyclotron power and diagnostic signals. In order to provide low-loss transmission, the waveguides need to be several wavelengths in diameter. Corrugating the walls reduces the loss further not only in straight runs but also at bends, and makes the waveguide robust against small deformations. We present results of theoretical calculations showing that these properties can be maintained over very wide bandwidths suitable for ITER applications. The computer code used to make these calculations is based on a space-harmonic analysis of the fields. Measurements on waveguides are described that validate the theory for corrugated waveguides semiquantitatively. Tolerances on the corrugation geometry, waveguide bore, waveguide junctions, input Gaussian beam alignment, and waveguide support alignment are discussed. It is shown that the low-loss properties of corrugated waveguide are insensitive to many variations in geometry and deviations from ideality. Finally, some fabrication considerations are presented. In order to provide more complete coverage of the waveguides themselves, only brief mention is made of the losses due to input coupling and components such as bends. Some review material and some level of technical detail are both presented.