ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Masami Ohnishi, Osawa Hodaka, Tomoya Furukawa, Takashi Suma
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1101-1104
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1644
Articles are hosted by Taylor and Francis Online.
A neutron production rate (NPR) of 2.3 × 106 1/sec has been achieved in a spherically convergent D-D fusion neutron generator with the applied voltage 60 kV and the steady-state discharge current 40 mA. The scaling of NPR with respect to the current, however, is linear. The results revealed the fact that the fusion reaction occurs mainly between the accelerated molecular ion D2+ and neutral gas D20. In considering a future application of the neutron source, the dependence on a square current, i.e., the fact that the main reactions are caused by accelerated ion beam-beam colliding fusions is most desirable. A new IEC device has been constructed in order to obtain evidence of beam-beam colliding fusions. The device is designed to operate in a short pulse of the voltage -70 kV and the large current 100 A. This is the first experiment to draw a current of several tens of amperes in IEC devices. The discharge characteristics were studied with regard to the relations of the current, applied voltage and gas pressure. The neutron production rate was also measured, and the conditions to realize accelerated ion beam-beam fusion are discussed.