ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Makoto Oyaidzu, Yusuke Nishikawa, Taichi Suda, Akira Yoshikawa, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1002-1006
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1625
Articles are hosted by Taylor and Francis Online.
Deuterium ion implantation and subsequent X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) experiments were performed with varying implantation temperatures to reveal chemical behavior of tritium produced in Li2TiO3. These experimental results showed that there were four deuterium trapping states; two of which were interacted with and without oxygen near the surface, and the other two were interacted with E'-center and with oxygen with the formation of O-D bond in the bulk. These trapping states of deuterium in the bulk were almost the same as those of tritium generated in thermal neutron-irradiated Li2TiO3. The total amount of deuterium retention in the bulk was almost constant until O-D bonds formed in the bulk were decomposed, indicating that tritium trapping could proceed under hot atom chemical reactions. It was concluded that E'-center could trap the implanted deuterium more frequently than oxygen with the formation of O-D bonds in the bulk. Annihilations of them due to oxygen recovery could increase the retention of D with the formation of O-D bonds, resulting in the almost constant deuterium retention ratio up to its decomposition temperature of 573 K.