ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Yuji Hatano, Andrei Busnyuk, Alexander Livshits, Hirofumi Homma, Masao Matsuyama
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 990-994
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1623
Articles are hosted by Taylor and Francis Online.
Niobium is a potential candidate of tube material in vacuum permeator for tritium recovery from Pb-17Li liquid blanket system. From this viewpoint, the permeation of hydrogen through a Nb membrane was investigated with an ultra-high vacuum apparatus under the conditions relevant to the blanket system where no oxide films could be retained on the membrane surfaces. It was, however, found that the permeation rate sharply decreased with increasing oxygen concentration in the bulk of membrane; at upstream H2 pressure of 1 Pa and membrane temperature of 700°C, for example, the permeation rate at oxygen concentration corresponding to oxygen potential in Pb-17Li (0.054 at%) was evaluated to be 1/5 of the value expected from hydrogen solubility and diffusivity in Nb. Such small permeation rate was ascribed to the presence of oxygen monolayer formed by surface segregation from the bulk. Surface modification by Pd coating was found to give only limited improvement due to degradation in coating effect induced by interdiffusion between Pd and Nb. Methods to improve the high temperature stability of Pd coating was discussed.