ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Takeo Nishitani, Mikio Enoeda, Masato Akiba, Toshihiko Yamanishi, Kimio Hayashi, Hiroyasu Tanigawa
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 971-978
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1620
Articles are hosted by Taylor and Francis Online.
Japan Atomic Energy Agency (JAEA) plays a role of the principal institute in Japan for the design and the development of a solid breeder (WCSB) blanket and a helium cooled solid breeder (HCSB) blanket, in the ITER Test Blanket Modules (TBM) programt. The WCSB and HCSB modules consist of reduced activation ferritic/martensitic steel, F82H, as the structural material, Li2TiO3 as the tritium breeder material, beryllium or Be-Ti alloy as the neutron multiplier. One of the R&Ds for the WCSB TBM, the mockup of the first wall with embedded cooling channels was fabricated by applying HIP technique. Pebbles of Be12Ti, which is a candidate material for the advanced neutron multiplier, were produced by a small-scale rotating electrode method. Mechanical and chemical properties and irradiation effects have been studied for Be12T pebbles. Both oxidation and steam interaction were about 1/1000 as small as those of beryllium metal, which indicates a possibility to reduce a risk of a water or air ingress accident. The test schedule of TBMs is discussed according to the ITER operation phases.