ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
M. Yamauchi, T. Nishitani, S. Nishio, J. Hori, H. Kawasaki
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 781-785
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1585
Articles are hosted by Taylor and Francis Online.
Low activation material is one of the important factors for constructing high power fusion reactors in future. Unexpected activation, however, may be produced through sequential reactions due to charged particles created by primary neutron reactions. In the present work, the effect of the sequential activation reaction was studied for candidate low activation materials of a fusion demo-reactor. The calculations were conducted by the ACT4 code developed in JAEA for the activation analysis of fusion reactor designs and revised for dealing with the sequential activation reactions. The results say that the real dose rate around vanadium alloy becomes larger after the cooling for 3 years by considering the reaction. Although metal hydrate is regarded as an excellent low activation shield material, the reactions due to recoil protons are influential and the dose rate around vanadium hydrate is several orders of magnitude larger than the value calculated without the sequential process after 2 weeks cooling. In case of liquid breeders, the effect of sequential reactions is popularly observed and it affects the breeder reprocessing and the shield design of circulation loop.