ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Tomoaki Satoh, Kazuhisa Yuki, Shin-ya Chiba, Hidetoshi Hashizume, Akio Sagara
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 618-624
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1557
Articles are hosted by Taylor and Francis Online.
Heat transfer performance for high Prandtl number and high temperature molten salt flow in a circular pipe and in sphere-packed pipes are evaluated with modified Tohoku-NIFS Thermofluid Loop (TNT loop) using high-temperature molten salt HTS (KNO3 : NaNO2 : NaNO3 = 53 : 40 : 7), as a stimulant of Flibe (LiF : BeF2 = 66 : 34). The modified TNT loop has much longer entrance region to develop a thermal boundary layer, which enable us to obtain more precise heat transfer data.In the modified TNT loop experiments, the heat transfer characteristics in a circular pipe flow have good agreements with the representative correlations. It is obvious that the analogy for heat and momentum transfer is also valid for high-temperature and high-Prandtl-number molten salt flow. It is also confirmed that the heat transfer performance of sphere-packed pipes increases up to about 4 times higher than that of circular pipe, in case of relatively low flow rate. This can be effective in the Flibe blanket system from the viewpoints of moderating MHD effect and electrolysis.