ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
R. L. Boivin, DIII-D Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 367-374
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1515
Articles are hosted by Taylor and Francis Online.
The DIII-D National Fusion Facility has long been a center of innovation and development of diagnostics for magnetic fusion devices. The DIII-D device, a moderate size tokamak, with a high flexibility shaping coil set, neutral beam injection (NBI), electron cyclotron heating (ECH) and ion cyclotron heating (ICH), supports a very broad research program infusion science, including critical aspects related to burning plasmas expected to be encountered in ITER. This scientific program is supported by a large set of diagnostics (approximately 50), which is the product of a highly collaborative program between universities, national laboratories and industry. Although many diagnostic systems are now routinely employed to measure a wide range of plasma parameters, such as temperature, rotation, density and current profiles, there are many areas that are inherently difficult or prohibitively expensive to diagnose. Such areas include the measurements associated with energetic ion populations or with the characterization of plasma flows in the divertor/edge area. In addition, the study of burning plasmas will require the development of new and updated techniques, which need to be developed and tested in existing devices in relevant plasma conditions.