ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hartmut Zohm
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 134-144
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1492
Articles are hosted by Taylor and Francis Online.
A review of recent experimental results in electron cyclotron (EC) resonance heating and EC current drive (CD) (ECCD) is given. Special emphasis is put on the recent developments of new schemes in which EC waves can heat and drive current in magnetically confined fusion plasmas. These comprise scenarios to overcome the density cutoff experienced in application of the classical first-harmonic ordinary mode (O1) and second-harmonic extraordinary mode (X2) schemes as well as to increase the CD efficiency of EC waves while maintaining their good localization. In particular, we discuss recent experimental progress in tokamaks, stellarators, and spherical tori in the areas of the second-harmonic ordinary mode (O2), third-harmonic extraordinary mode (X3), and electron Bernstein wave schemes [mostly Ordinary-eXtraordinary-Bernstein (O-X-B) scheme] as well as experiments in which the combination of ECCD with lower hybrid CD leads to a synergetic increase of the ECCD efficiency. A particular application of ECCD that has recently received much attention and is therefore reviewed in this paper is the suppression of neoclassical tearing modes (NTMs) by ECCD. We show that the theoretically predicted requirements for ECCD in terms of deposition (maximizing the ECCD driven current density) and injection in phase with the O-point of the magnetic island associated with the NTM (which is needed when the island width falls below the deposition width) have been verified experimentally. Also, many of the elements needed for constructing a reliable, feedback-controlled NTM suppression system for ITER based on ECCD have now been demonstrated experimentally, and the next step, which is their integration into a reliable scheme, is well within reach.