ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
B. K. Shukla, K. Sathyanarayana, P. Chattopadhyay, Pragnesh Dhorajia, D. Bora
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 68-74
Technical Paper | doi.org/10.13182/FST07-A1486
Articles are hosted by Taylor and Francis Online.
In conventional electron cyclotron resonance heating systems, beam steering for current drive is achieved by rotating the mirrors of the launcher. Alternatively, it could be achieved remotely using a rectangular/square-corrugated waveguide (SCW). Symmetric beam steering is achieved at a length L (8a2/), where "a" is the width of the waveguide and "" is the wavelength of the microwave while at L/2 (4a2/) antisymmetric steering is seen. At a length of 2a2/, beam splitting into two equal lobes is observed.A low-power experiment on a remote steering antenna is carried out with an SCW at 2a2/ and a plane fixed mirror at the exit of the SCW, which diverts the microwave beam in one direction. The microwave instrumentation consists of a Gunn oscillator (82.6 GHz/~40 mW/TE10), an isolator, an attenuator, waveguides, and a mode converter (TE10 to HE11). The output of the mode converter is a 63.5-mm-diam corrugated waveguide, which couples the microwave beam to the SCW. The microwave power emerging from the waveguide is scanned in the far-field region using calibrated detectors. The power spectrum at the output of the SCW shows that the peak appears at the same angle input to the SCW. Effective steering is achieved for a smaller length of the waveguide at various input angles from 6 deg to 18 deg.