ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. Roedig, V. Barabash, R. Eaton, T. Hirai, I. Kupriyanov, J. Linke, X. Liu, A. Schmidt, Zh. Wang
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 16-20
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14105
Articles are hosted by Taylor and Francis Online.
In order to qualify new beryllium grades for ITER, several Russian and Chinese materials were tested in the electron beam facility JUDITH-1 and compared to the reference material S65C. In a former campaign, samples from these materials were loaded in thermal shock experiments with single shots and multiple shots. The present work is an extension of this work to other loading scenarios.Four actively cooled mock-ups were produced in Russia and in China (two by each party). These mock-ups consisted of a water-cooled CuCrZr body with four tiles from different beryllium grades. Both parties used their own joining techniques, but each of the mock-ups also contained beryllium tiles from the other party, as well as from S65C.Each tile was loaded by the following scenarios on different surface areas:• simulation of vertical displacement events (VDEs) at 40 MJ/m2, 1 shot, heated area a = 10 × 10 mm2, 50-ms ramp-up, 165-ms steady state• disruption simulation at 3 MJ/m2, 1 shot, heated area a = 5 × 5 mm2, t = 5 ms• repetitive test with 1000 shots at 80 MW/m2 (2 MJ/m2), a = 10 × 10 mm2, t = 25 ms. This loading condition is similar to one that was proposed by Sandia National Laboratory for the comparison of different beryllium grades.Finally, one mock-up by each party underwent a thermal fatigue test with 1000 cycles at 2 MW/m2, 15 s heating, and 15 s cooling (heated area: whole sample surface). Heavy melting was observed in the area of the VDE loading, but no detachment of any of the tiles was found. Following the high-heat-flux experiments in the electron beam facility, post-mortem examinations were performed by optical photography and scanning electron microscopy on the surfaces as well as by metallography. From these analyses, no fundamental differences were found for the damage in the different beryllium grades.