ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
F. L. Chong, J. L. Chen, X. B. Zheng
Fusion Science and Technology | Volume 61 | Number 3 | April 2012 | Pages 236-239
Technical Paper | doi.org/10.13182/FST11-350
Articles are hosted by Taylor and Francis Online.
Tungsten coating as a plasma-facing material on copper alloys is an important issue of a tokamak fusion device. Tungsten tile was created by means of plasma-spraying technology. The properties of the tungsten coating are as follows: low porosity of 4.7%, [approximately]92% of the theoretical tungsten bulk density, and high thermal conductivity of [approximately]79.7 W/mK, which are interesting properties for the plasma-facing material. To alleviate the stress concentration, the tile was designed with rounded edges with a radius of 5 mm. The fatigue performance of the tungsten tile was tested at 5 MW/m2 in an electron beam facility. No damage was observed after 38 cycles at 250 s per cycle. It is concluded that the rounded-edge design is helpful in reducing the maximum stress and in improving the resistant heat load property, which was proved by finite element analysis.