ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Eric P. Robertson, Michael G. McKellar, Lee O. Nelson
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 452-457
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13462
Articles are hosted by Taylor and Francis Online.
This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.The HTGR was assumed to be physically located near the oil shale operation such that heat losses during surface transport of the heating fluid were negligible. Transferring the required retort heat for all three cases to the underground oil shale was modeled by a series of closed-loop pipes. The pipes ran from the surface to the desired subsurface zone where the majority of the heat was transferred to the oil shale; the cooled fluid was then returned to the heat source at the surface for reheating. The heat source was a natural gas fired boiler for the base case and was an HTGR for the HTGR-integrated case. The fluid and heat flows through the circulation systems were modeled using Hyprotech's HYSYS.PlantTM process modeling software.A mass and energy balance model was developed to evaluate oil production, gas production and usage, electricity generation and usage, heat requirements, and CO2 emissions for each case. Integrating an HTGR to an in situ oil shale retort operation appeared quite feasible and had some notable advantages over the base case. The HTGR-integrated case produced the same amount of refinery-ready oil, four times the amount of gas, 8% of the amount of CO2, and 70% of amount of electricity as the base case evaluated with retort heat coming from combustion of fossil fuels.