ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Anselmo Cisneros, Nicholas Zweibaum, Christian Di Sanzo, Jeremie Cohen, Ehud Greenspan, Per Peterson, Bernhard Ludwigt
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 431-435
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13458
Articles are hosted by Taylor and Francis Online.
The proliferation resistance of the nuclear fuel cycle would be increased if one could eliminate the need for both uranium enrichment and spent fuel reprocessing. Heavy-water and graphite moderated critical reactors can extract energy from natural uranium but offer a very low uranium utilization (low discharge burnup). The objective of the present study is to explore the feasibility of achieving high fuel utilization without resorting to enrichment and reprocessing using spallation neutron source driven subcritical reactors. Three different high burnup once through subcritical nuclear systems are investigated: a fluoride salt cooled high temperature reactor (FHR) with pebble fuel, a helium cooled core with sphere pack fuel based on General Atomics' EM2 reactor concept, and a sodium cooled fast reactor that is loaded with fuel discharged from a high burnup Breed-and-Burn (B&B) fast reactor that is fed with depleted uranium, after removing the gaseous fission products and inserting the voided fuel rods into a new clad (without removing the old one).The pebble fuel design and fuel cycle for the FHR concept was optimized for maximum electric power multiplication using natural thorium fuelled subcritical core. The maximum attainable power multiplication was not high enough to merit future studies.The optimal discharge burnup of the fuel in the EM2 type subcritical core was found to be approximately 30% FIMA and the corresponding power multiplication was found higher than in the FHR but still not high enough for practical applications.Significantly better performance was obtained from the sodium-cooled source-driven core that is fed with metallic U-TRU-Zr fuel discharged at 20% FIMA from a critical B&B fast reactor that underwent recladding. The maximum attainable power multiplication was found to be close to 10 while fissioning an additional 20% of the loaded heavy metal.