ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
U. Shumlak et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 119-124
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13407
Articles are hosted by Taylor and Francis Online.
The stabilizing effect of a sheared axial flow is investigated in the ZaP Flow Z-pinch experiment at the University of Washington. Long-lived, Z-pinch plasmas are generated that are 100 cm long with a 1 cm radius and exhibit gross stability for many Alfvén transit times. Experimental measurements show a sheared flow profile that is coincident with the quiescent period during which magnetic fluctuations are diminished. The flow shear is generated with flow speeds less than the Alfvén speed. While the electrodes contact the ends of the Z-pinch, the surrounding wall is far enough from the plasma that the wall does not affect stability, as is investigated experimentally and computationally. Relations are derived for scaling the plasma to high energy density and to a fusion reactor. The sheared flow stabilized Z-pinch concept provides a compact linear system.