ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Francesco Milani, Ivone Benfatto, Alexander Roshal, Inho Song, Jeff Thomsen
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 83-88
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13401
Articles are hosted by Taylor and Francis Online.
In fusion experiments, interruption units for high DC currents are widely used for generating the loop voltage required at plasma breakdown and current start-up. Likewise, similar systems are employed for the protection of superconductive coils in case of quench (i.e. a loss of superconductivity). In such event, large resistor banks are inserted in the circuits by means of circuit breakers, so as to dissipate the energy stored in the coils.The ITER experiment, the largest fusion facility ever conceived, is currently under construction in the south of France at Cadarache site and, as in the already existing fusion experiments, it will be provided with DC interruption units for plasma initiation (the Switching Network Units - SNUs) and coil quench protection (the Fast Discharge Units - FDUs).The paper, after a survey on the interruption units installed in large fusion facilities worldwide, describes the systems designed for the ITER experiment, pointing out their peculiarities and challenging issues. Then, a comparison among different solutions implemented is given, pointing out critical performances required, issues in the design of key components and possible future developments.