ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
T. Otsuka, M. Shimada, T. Tanabe, J. P. Sharpe
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1539-1542
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12726
Articles are hosted by Taylor and Francis Online.
In order to understand behavior of tritium (T) on surface and in bulk of metals exposed to T plasma, both surface activities and depth profiles of T were periodically observed by a tritium imaging plate technique during storage in air at room temperature (RT) for over 1 year. In the T depth profiles, T localized within a depth of sub mm from the surface was clearly distinguished from T in the bulk. The former was attributed to strong trapping by some defects produced by the plasma exposure and remained quite longer during the storage, while the latter was released from the surfaces by diffusion. T surface activity measured on the plasma-exposed surface changed in a complicated way with time due to removal of T by isotopic replacement with H in ubiquitous H2O and T supply from the bulk in the course of the diffusional release.