ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Junya Kobayashi, Michiyo Okui, Kenshi Komatsu, David J. Chen
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1186-1189
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12627
Articles are hosted by Taylor and Francis Online.
Werner syndrome (WS) is an autosomal recessive disorder associated with premature aging and cancer predisposition caused by mutations at the WRN gene. Several recent reports suggest that accumulation of DNA damage could lead to premature cellular aging. Therefore, WRN might function in DNA damage response, particularly DNA repair. Here, we investigated the role of WRN in DNA repair and genome integrity. WRN protein rapidly accumulated at DNA damage sites and formed discrete nuclear foci only during S phase, but not in G1 phase. WRN-defective WS cells showed the spontaneous accumulation of -H2AX (DSB marker), suggesting that WRN could function to repair the S phase-dependent DNA damage. However, WS cells showed homologous recombination (HR) at normal level, although HR repair functions preferentially during the S phase. Translesion DNA synthesis (TLS) is known as another repair pathway for S phase-dependent DNA damage. WS cells exhibit an increase in spontaneous focus formation of pol and Rad18, which are important for TLS regulation. WS cells also showed the spontaneous ubiquitination of PCNA and increased pol-related gene mutation. Taken together, WRN could work for the regulation of TLS pathway and might also be important to maintain genome integrity under a little DNA damage by tritium.