ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
T. Kanazawa, M. Nishikawa, H. Yamasaki, K. Katayama, H. Kashimura, T. Hanada, S. Fukada
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1167-1170
Blanket and Breeder Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12623
Articles are hosted by Taylor and Francis Online.
The present authors have developed the tritium release model to represent the tritium release behavior from solid breeder materials (Li2ZrO3, Li2TiO3, Li4SiO4, LiAlO2 and Li2O). It has been found that water is released from solid breeder materials into the purge gas due to desorption of physically and chemically adsorbed water and water generation reaction and that this water affects the tritium release behavior. In this study, the amount of adsorbed water and its desorption rate for Li2ZrO3 were quantified. It was found in this experiment that Li2ZrO3 has the largest adsorption amount among the solid breeder candidates. It was also observed that Li2ZrO3 has the largest water generation capacity among the solid breeder candidates. A unique reaction at around 550°C which made up approximately 80% of the capacity of water generation was also observed. It is considered that the phase change of ZrO2 at around 550°C supplies oxygen to promote water generation reaction. Tritium release behavior from Li2ZrO3 blanket was estimated using the properties obtained in this study under the operational condition of ITER or a commercial reactor.