ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kazuhiro Kobayashi, Takumi Hayashi, Toshihiko Yamanishi
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1041-1044
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12594
Articles are hosted by Taylor and Francis Online.
A fusion reactor requires high levels of safety and public acceptability, so safeconfinement of tritium is one of the key issues. Tritium must be well controlled with no excessive release to environment and no excessive workers exposure. Especially, the hot cell and tritium facility of ITER will use various construction materials such as the concrete and the organic materials. Since the concrete materials will be contaminated by tritium compared with the metal materials such as SS, it is very important to study the tritium behavior on the materials from the viewpoint of the excessive exposure protection to workers. Therefore, in order to understand the tritium behavior on the concrete materials, the sorption and desorption experiment was carried out as a function of the exposure time and temperature of water in the desorption experiment. The used samples were cement paste, mortar and concrete. These samples were exposed into 740 ~ 1110 Bq/cm3 of tritiated water vapor at room temperature. The exposed time was from a day to several weeks. The exposed samples for a certain period were soaked into water at 277 K, 298 K and 343 K, and then the water was periodically measured by Liquid Scintillation Counter (LSC) and the amount of tritium sorbed on the concrete materials were evaluated. The amount of the tritium sorbed in the concrete materials reached equilibrium less than 2 months. In the desorption behavior from concrete materials to water at 277K, 298K and 343K, the tritium sorbed in the concrete materials was desorbed about 99 % for 2 days at 343 K of water. However, the tritium desorption from concrete materials was sufficiently detected though 3 months passed. In addition, the tritium profile on the surface concrete materials was measured by a tritium imaging plate.