ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Y. Sun et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 899-904
Tritium Storage | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12562
Articles are hosted by Taylor and Francis Online.
To efficiently confine the gaseous deuterium and tritium, which are the important fuels in the development of fusion energies, China has developed a series of hydrogen resistant stainless steels, named as the HR series of stainless steels. The mechanisms of the interactions between tritium with the decayed helium-3 and these stainless steels were investigated by theoretical calculations, experimental observations or tests through gaseous tritium loading into the stainless steels and years of storage. Results showed that the China made HR stainless steels had good performance to resist hydrogen damage or hydrogen embrittlement. They are the ideal structure materials for tritium systems used in a fusion reactor like ITER. Nevertheless, tritium permeation at high temperatures are still high. Tritium permeation barriers with the aluminides on the surface of the components were successfully developed, which could greatly reduce tritium permeation flux down to 2~3 orders of magnitudes.