ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Sandra J. Brereton et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 879-884
ICF | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-879
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF is a 192- beam, Nd-glass laser facility that is capable of producing 1.8 MJ, 500 TW of ultraviolet light, making it over fifty times more energetic than other existing ICF facilities. The NIF Project began in 1995 and completed in 2009. Ignition experiments using tritium on NIF have just commenced. Tritium arrives at the facility in individual fuel reservoirs that are mounted and connected to a target on the Cryogenic TARget POSitioner (TARPOS). CryoTARPOS provides the cryogenic cooling systems necessary to complete the formation of the ignition target's fuel ice layer, as well as the positioning system that transports and holds the target at the center of the NIF chamber during a shot. After a shot, unburned tritium is captured by the target chamber cryopumps. Upon regeneration, the cryopump effluent is directed to the Tritium Processing System, where elemental tritium is oxidized and captured on molecular sieve. Additional systems supporting tritium operations include area and stack tritium monitoring systems, local ventilation for contamination control, and a decontamination area that includes fume hoods and walk-in enclosures for working on contaminated components. This equipment has been used along with standard contamination control practices to manage the tritium hazard to workers and to limit releases to the environment to negligibly small amounts.