ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jose-Carlos Rivas, Javier Dies
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 825-829
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12488
Articles are hosted by Taylor and Francis Online.
In this contribution, an upgraded model for plasma-wall interaction in the AINA code is presented. The AINA code is a comprehensive hybrid code comprising a global balance plasma dynamics model and a radial and poloidal thermal analysis of in-vessel components. AINA is an evolution of the SAFALY code, which was initially adopted to assess ITER EDA plasma safety events and quantitatively investigate plasma instability events in nuclear fusion reactors such as ITER.The new erosion code module includes algorithms for the most relevant plasma wall interaction phenomena that will take place in the ITER vessel during the steady state of the normal operation. Physical sputtering, radiation enhanced sublimation (RES), and chemical erosion algorithms have been added to the previous thermal sublimation algorithm. The erosion results from these models have been benchmarked with results for ITER normal operation from the B2-Eirene code.The new erosion model had to be tested with external data for particle fluxes over the wall, because the AINA code does not presently have the ability to model those particle fluxes. However, with the new results, the impurity transport model parameters have been re-calibrated and some useful conclusions have been extracted.