ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. Zucchetti, L. Guerrini, Y. Poitevin, I. Ricapito, M. Zmitko
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 765-770
Safety & Environment | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12477
Articles are hosted by Taylor and Francis Online.
The determination of the radioactive inventory and of the contact dose rates in the different ITER Test Blanket Modules systems is carried out, both for Helium-Cooled Lithium-Lead (HCLL) concept and the Helium-Cooled Pebble-Bed (HCPB) concept. The evaluations have been carried out by means of the MICROSHIELD code, starting from the data on the neutron-induced radioactivity in the blanket materials, completely available for both the blanket modules. The possible sources of radioactive material in all the systems have been individuated and their contributes estimated. In general, for both HCLL and HCPB systems, radioactivity inventory and contact dose rates turn out to be quite moderate. No particular radioactive safety concern should arise for the examined components.