ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
J. W. Leachman
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 486-490
Plasma Engineering - Fueling and Diagnostics | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-486
Articles are hosted by Taylor and Francis Online.
Visco-plastic flow properties of hydrogenic solids are important considerations for the design and operation of continuous hydrogenic pellet extrusion systems. Prior to 2010, the visco-plastic flow behavior of deuterium, tritium, and mixtures of the isotopes was only known at 14 K and no heat transfer studies were available. To address these needs, a Cryogenic Couette Viscometer (CCV) was developed at the University of Wisconsin-Madison. Visco-plastic flow characteristics of solid neon, deuterium, and hydrogen were measured using the CCV from the onset of solidification to sub-cooled solid states over a range of shear rates. This paper discusses the transformation of these measurements, using the Quantum Law of Corresponding States, to predict the visco-plastic flow behavior of solid tritium and deuterium-tritium mixtures. Comparisons of predicted values with experimental measurements are made, where available.