ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
S. Nogami, J. Miyazaki, T. Nagasaka, A. Hasegawa, T. Muroga
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 417-421
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12392
Articles are hosted by Taylor and Francis Online.
The hardness distribution and the effect of post welding heat treatment (PWHT) at 600°C and 1000°C for 1 h and aging heat treatment at 600°C for 1000 h in the dissimilar-material electron beam weld (EBW) joint with pure-V and SUS316L austenitic stainless steel were investigated. The electron beam was positioned just on the butt joint (EB00), shifted by 0.2 mm (EB02) and 0.4 mm (EB04) on the pure-V side. The EBW joint was distinguished into the base metal of V (V-BM), weld metal (WM), interlayer at the edge of the WM of SUS316L side (IL) and base metal of SUS316L (SUS316L-BM). The IL was observed only in the EB02 and EB04 joints. The formation of macro-pore was observed in the EB04 joint. Much higher hardness was observed at the WM and IL of the as-welded EB00 and EB02 joints than the other regions of them. The hardness change in the WM was relatively small due to the PWHT at 600°C up to 1 h, whereas significant increment was observed due to the PWHT at 1000°C for 1 h regardless of the EB position. The hardness of the IL after the PWHT at 600°C was almost twice higher than that of the as-welded one, which showed slightly further increment at 1000°C. Rapid increment of the hardness due to the aging at 600°C for 1–10 h and slightly further increment of it due to the aging for 100–500 h occurred in the WM of the EB00 joint.