ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Akiko Hamada, Makoto Kobayashi, Rie Kurata, Masato Suzuki, Hajimu Yamana, Toshiyuki Fujii, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 399-402
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12388
Articles are hosted by Taylor and Francis Online.
Annihilation behaviors of irradiation defect and, correlation of these behaviors with deuterium trapping and desorption in gamma-ray irradiated Li2TiO3, which is one of the candidates for tritium breeding material, were studied by means of an ESR(Electron Spin Resonance) method and TDS (Thermal Desorption Spectroscopy). From the ESR spectra, gamma-ray irradiation induced irradiation defects such as E'-centers, oxygen-hole centers which were expected to be tritium trapping sites. These irradiation defects were annihilated in the temperature range of 500-650 K. From the TDS spectra for Li2TiO3 exposed to D2 gas, the deuterium desorption behavior was found to consist of four stages, corresponding retention as the surface, in E'-center and as hydroxides bound with Ti or Li. In addition, most of deuterium was released as water form around 400, 550 and 650K. By comparison of the amounts of the deuterium retentions with or without the gamma-ray irradiation, the retention of deuterium trapped with the irradiation defects was increased by gamma-ray irradiation, indicating that the irradiation defects like E'-centers induced by gamma-ray irradiation would be one of the tritium trapping sites in tritium breeding materials. The activation energy of hydrogen isotope desorption from the E'-center was estimated to be 0.63 eV for gamma-ray irradiated Li2TiO3, showing good agreement with that of the recombination reaction between the E'-center and the oxygen-hole center. These results indicated that the tritium desorption was governed by the annihilation of the E'-centers.