ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Takuya Nagasaka, Takeo Muroga, Takeshi Miyazawa, Hideo Watanabe, Masanori Yamazaki
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 379-383
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12384
Articles are hosted by Taylor and Francis Online.
A reference low-activation vanadium alloy NIFS-HEAT-2 was neutron-irradiated at 450 °C and below, in order to estimate the resistance to low temperature irradiation. DBTT of NIFS-HEAT-2 was -85 °C after irradiation up to 8.5 dpa at 450 °C in Na atmosphere, while DBTT was below -196 °C for 3.7 dpa at 430 °C in Li atmosphere. On the other hand, DBTT was lower than about -90 °C for the irradiation up to 0.1~1 dpa at 60, 290 and 400 °C. The DBTT shift was increased with increasing hardness after neutron irradiation for limited irradiation conditions. The mechanisms of DBTT shift and irradiation hardening at low temperature was discussed.