ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE announces awards for three university nuclear education outreach programs
The Department of Energy’s Office of Nuclear Energy has announced more than $590,000 in funding awards to help three universities enhance their outreach in nuclear energy education. The awards, which are part of the DOE Nuclear Energy University Program (NEUP) University Reactor Sharing and Outreach Program, are primarily designed to provide students in K-12, vocational schools, and colleges with access to university research reactors in order to increase awareness of nuclear science, engineering, and technology and to foster early interest in nuclear energy-related careers.
J. D. Kotulski, R. S. Coats, M. F. Pasik, M. Ulrickson
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 272-277
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12364
Articles are hosted by Taylor and Francis Online.
The ITER device is based on the tokamak concept of magnetic confinement in which the plasma is contained by the use of strong magnetic fields. The nearest structure to the plasma is the blanket system which provides shielding to the vacuum vessel and the superconducting magnets. There are potential abnormal operating environments where the plasma currents inside the tokamak are disrupted and induce eddy currents in the blanket (first wall and shield module). These currents interact with the large magnetic fields to produce forces in the blanket which could potentially cause mechanical failure in the first wall, shield module, or vacuum vessel. For this reason the design and qualification of the ITER blanket system requires appropriate high-fidelity electromagnetic simulations that capture the physics of these disruption scenarios.A number of different geometries will be discussed revealing the effect of different first wall designs and shield modules on the forces and torques experienced by these assemblies during plasma disruption.The key features of the modeling procedure will be presented including the plasma current modeling and geometric modeling of the first wall, shield modules, and vacuum vessel. The eddy current calculation is performed using the Opera-3d software.