ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
J. D. Kotulski, R. S. Coats, M. F. Pasik, M. Ulrickson
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 272-277
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12364
Articles are hosted by Taylor and Francis Online.
The ITER device is based on the tokamak concept of magnetic confinement in which the plasma is contained by the use of strong magnetic fields. The nearest structure to the plasma is the blanket system which provides shielding to the vacuum vessel and the superconducting magnets. There are potential abnormal operating environments where the plasma currents inside the tokamak are disrupted and induce eddy currents in the blanket (first wall and shield module). These currents interact with the large magnetic fields to produce forces in the blanket which could potentially cause mechanical failure in the first wall, shield module, or vacuum vessel. For this reason the design and qualification of the ITER blanket system requires appropriate high-fidelity electromagnetic simulations that capture the physics of these disruption scenarios.A number of different geometries will be discussed revealing the effect of different first wall designs and shield modules on the forces and torques experienced by these assemblies during plasma disruption.The key features of the modeling procedure will be presented including the plasma current modeling and geometric modeling of the first wall, shield modules, and vacuum vessel. The eddy current calculation is performed using the Opera-3d software.