ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
D. Navaei, X. R. Wang, M. S. Tillack, S. Malang, ARIES Team
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 233-237
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12358
Articles are hosted by Taylor and Francis Online.
The use of tungsten as a plasma-facing material necessitates a transition joint to the structural material of the primary coolant loop at some location in order to transport the coolant to the heat exchanger. A critical issue in transition joints is the thermal expansion mismatch between materials, which can lead to unacceptably high thermal stresses. Detailed 2D and 3D analyses were performed to study the behavior of a transition from tungsten to ferritic steel (FS) with an intermediate layer of tantalum, located outside of the high heat flux region. This paper describes the results of FEM analyses including primary and secondary stresses under various time-dependent loading conditions such as warm and cold shutdown, and allowing for inelastic behaviors leading to stress relaxation and ratcheting. The results show that the transition joint satisfies the design requirement on maximum accumulated principal strain during operation.