ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
L. El-Guebaly, R. Kurtz, M. Rieth, H. Kurishita, A. Robinson, ARIES Team
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 185-189
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12349
Articles are hosted by Taylor and Francis Online.
The development of radiation-resistant materials to sustain the harsh fusion environment represents a challenging task for divertor designers. In recent years, advanced physics simulations of the power leaving the plasma with radiation and charged particles indicate much higher heat fluxes to the divertor than previous estimates. In response, experts in EU, Japan, and US developed several W alloys for advanced He-cooled divertors that can handle heat fluxes in excess of 10 MW/m2. This paper briefly discusses the ongoing effort to develop W alloys suitable for fusion applications, the challenging phenomena impacting the behavior of W under a fusion environment, and the environmental impact of the most promising, state-of-the-art alloys: W-La2O3 and W-1.1TiC.