ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
M. J. Loughlin, E. Polunovskiy, K. Ioki, M. Merola, G. Sannazzaro, M. Sawan
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 81-86
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12331
Articles are hosted by Taylor and Francis Online.
The ITER Tokamak will be the largest magnetic confinement fusion device ever built. Confinement will be achieved by a combination of magnetic fields generated by a plasma current of 15MA and externally applied toroidal field of 5.4T. The toroidal field will be generated in 18 superconducting coils which must be protected from the radiation from the burning plasma. This paper describes the radiation transport studies that have been conducted to examine the shielding properties of the components which protect the coils and summarizes the principles which have been developed to optimise the shielding.