ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
R. D. Stambaugh, V. S. Chan, A. M. Garofalo, M. Sawan, D. A. Humphreys, L. L. Lao, J. A. Leuer, T. W. Petrie, R. Prater, P. B. Snyder, J. P. Smith, C. P. C. Wong
Fusion Science and Technology | Volume 59 | Number 2 | February 2011 | Pages 279-307
Technical Paper | doi.org/10.13182/FST59-279
Articles are hosted by Taylor and Francis Online.
To move to a fusion DEMO power plant after ITER, a Fusion Nuclear Science Facility (FNSF) is needed in addition to ITER and research in operating tokamaks and those under construction. The FNSF will enable research on how to utilize and deal with the products of fusion reactions, addressing such issues as how to extract the energy from neutrons and alpha particles into high-temperature process heat streams to be either used directly or converted to electricity, how to make tritium from the neutrons and lithium, how to deal with the effects of the neutrons on the blanket structures, and how to manage the first wall surface erosion caused by the alpha particle heat appearing as low-energy plasma fluxes to those surfaces. Two candidates for the FNSF are considered in this paper: normal and low aspect ratio copper magnet tokamaks. The methods of selecting optimum machine design points versus aspect ratio are fully presented. The two options are compared and contrasted; both options appear viable.