ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
V. Astrelin et al.
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 310-312
doi.org/10.13182/FST11-A11645
Articles are hosted by Taylor and Francis Online.
Recent high plasma parameters were reached in experiments on plasma heating in the multi-mirror open trap GOL-3. In these experiments deuterium plasma with density 1014–1016 cm-3 in the 12-m trap with corrugated magnetic field of 4.8T/3.2T was heated by a relativistic electron beam of eU 0.8 MeV, I 20 kA, j ~ 1–2 kA/cm2, pulse duration ~9 s and angular spread 0.2 rad. The electron temperature Te ~ 1–4 keV and ion one to Ti ~ 1–2 keV were reached. After the beam pulse the electron temperature of the plasma quickly (~20 s) decreased to -100 eV. In turn, this leads to an increase in the rate of cooling of ions through the ion-electron collisions, which, together with particle losses determines the energy confinement time of plasma as 0.5–1 ms.To increase the plasma parameters a prolonged heating of the plasma by the electron beam is proposed. The paper considers basic physical phenomena in the beam-plasma interaction and required parameters of the long pulse beam. A choice of long pulse beam parameters is based on the obtained experimental results and scalings. Then estimates of the expected plasma parameters under the influence of the new beam have been done.