ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
I. S. Chernoshtanov, Yu. A. Tsidulko
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 116-119
doi.org/10.13182/FST11-A11587
Articles are hosted by Taylor and Francis Online.
The Alfvén ion cyclotron instability is studied for mirror-confined bi-Maxwellian highly anisotropic plasmas. In such plasmas the wave length of unstable modes is of the order of the plasma scale length. Another specific feature is that a typical ion can execute several bounce oscillations along the strongly non-uniform plasma during the time of the phase divergence between the wave and cyclotron rotation. Traditional approaches such as WKB method and local dispersion relation fail under these conditions.An integral equation for the modes is derived. The spatial distribution of the eigenmodes as well as the marginal stability conditions are found by numerical solution of this equation. The asymptotics of these results in the limit of infinitely large anisotropy are obtained analytically. It is found that the mirror-confined highly anisotropic plasma can be much more stable than it follows from the traditionally used scaling.