ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
H. Huang, R. B. Stephens, S. A. Eddinger
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 39-45
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-39
Articles are hosted by Taylor and Francis Online.
High image resolution ([approximately]1.3 m/pixel) and precision positioning capability make the Xradia X-ray microscopy an attractive platform on which to study X-ray opacity variations. It can complement precision radiography (PR) as an instrument with much higher spatial resolution. PR measures X-ray transmission intensity variations down to 0.01% at 100-m resolution. Since the requirement to differentiate minute lateral variations in X-ray transmission intensity scales inversely with the spatial resolution, an X-ray imaging microscope such as the Xradia MicroXCT can be useful if it measures the transmission intensity variations to <1%. In normal practice, a number of imaging artifacts limit the intensity measurement to only [approximately]2% precision. Such artifacts include the thermal drift and the illumination uniformity of the X-ray source, as well as thickness variations in the scintillator plate and the beryllium X-ray tube window. The conventional flat-fielding technique is not effective against the dynamic interaction between the beryllium window texture and the moving shadow cast by a moving X-ray spot. We have modified the image processing routine so that the lateral variations in the transmitted intensity can be measured to [approximately]0.3% precision on low-Z samples. This technique can be used to record microstructure variations in beryllium samples. Currently, the beryllium microstructures are characterized by ultrasmall angle X-ray scattering on a synchrotron source, which is not commonly accessible, is expensive, and has a long turnaround time. This Xradia-based method has the potential to make it a routine measurement.