ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
H. Huang, R. B. Stephens, S. A. Eddinger
Fusion Science and Technology | Volume 59 | Number 1 | January 2011 | Pages 39-45
Technical Paper | Nineteenth Target Fabrication Meeting | doi.org/10.13182/FST59-39
Articles are hosted by Taylor and Francis Online.
High image resolution ([approximately]1.3 m/pixel) and precision positioning capability make the Xradia X-ray microscopy an attractive platform on which to study X-ray opacity variations. It can complement precision radiography (PR) as an instrument with much higher spatial resolution. PR measures X-ray transmission intensity variations down to 0.01% at 100-m resolution. Since the requirement to differentiate minute lateral variations in X-ray transmission intensity scales inversely with the spatial resolution, an X-ray imaging microscope such as the Xradia MicroXCT can be useful if it measures the transmission intensity variations to <1%. In normal practice, a number of imaging artifacts limit the intensity measurement to only [approximately]2% precision. Such artifacts include the thermal drift and the illumination uniformity of the X-ray source, as well as thickness variations in the scintillator plate and the beryllium X-ray tube window. The conventional flat-fielding technique is not effective against the dynamic interaction between the beryllium window texture and the moving shadow cast by a moving X-ray spot. We have modified the image processing routine so that the lateral variations in the transmitted intensity can be measured to [approximately]0.3% precision on low-Z samples. This technique can be used to record microstructure variations in beryllium samples. Currently, the beryllium microstructures are characterized by ultrasmall angle X-ray scattering on a synchrotron source, which is not commonly accessible, is expensive, and has a long turnaround time. This Xradia-based method has the potential to make it a routine measurement.